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ABSTRACT

A fundamental fact about grammatical structure is that it is highly varmdite across languages
and within languages. Typological analysis lBiawn language universals from grammatical
variation through implicational universals, implicational hierarchée®] more recently, semantic
maps. Withlarger-scale crosslinguistic studies and high levels of grammatical variation, these
methods are inadequate, and the most sophisticated of these, semantiwhmaptheoretically
well-motivated in typology, is not mathematically well-defined. Afgue that multidimensional
scaling (MDS), in particular the Optimal Classification nonparametriolding algorithm, offers a
powerful, formalized tool that allows linguists to infer language universals from highly coamudex
large-scale datasets. We compare our approach to prevaokisincluding Haspelmath’s semantic
map analysis of indefinite pronouns, Levinson et al.’s dissimilarity MiD8lysis of spatial
adpositions, and Dahl’'s (1985) analysis of teasd aspect. We offer a new analysis of the
relationship between lexical argtammatical aspect using MDS and a phasal model of event
structure. MDS worksest with large-scale datasets, implying the centrality of grammatical
variation in inferring language universals and the importance of examasingide a range of

grammatical behavior as possible both within and across languages.



1. Introduction

A fundamental fact abougrammatical structure is that it is highly variable both across
languages and within languages. The variation we are referring to is not sociolinguistic vdmidtion,
variation in the conventions of a language, that is, the conventional gramretiticéilires used by a
community of speakers to describe a particular situation.

Conventional variation isnost obviously manifested in crosslinguistic variation: different
languages conventionally employ differggtammatical structures to describe the same situation.
There is a high degree of variation in grammateiatribution patterns within languages as well.
This observation dates backlaast to the American structuralists (Bloomfield 1933:269; Harris
1946:177, 1951:244), and a similzwnclusion was drawn by Gross in a large-scale analysis of
French grammatical distribution patterns (Gross 1979:859-60).

Typological linguistic theory analyzes crosslinguistic variateomd derives universals of
grammar from that variation (Greenberg 1963/1990). A numbgrchniques have been developed
to analyze cross-linguistic variation and repreggammatical universals. The most important of
these willbe described in §2. Typological analysis in fact combines within-language variation and
crosslinguistic variation (Croft 2001:107). For examplegnan and Comrie’s classic work on the
Grammatical Relations (Accessibility) Hierarchy examivsation in relative clause constructions
depending on the grammaticalation being relativized. Their data includes variation within a
language as to what relative clawsmstruction is used for each grammatical relation as well as
variation across languages. This is true of all typological studies.

Typologicaltheory treats crosslinguistic variation as an extension of within-language syntactic
variation; this point has been maaere forcefully in recent typological theory (Croft 2001, 2003;
Haspelmath 2003). To the extent that typology is successfidriming language universals, this
hypothesis is confirmed. Hence the importance for typology of robust techrmueserring

language universals from grammatical variation. In this paper, we descrieg@itdte a technique



for deriving universals frontross-linguistic variation that has been only minimally used in
typological analysis, multidimensional scaling (MDS).

In 82, we describe the techniques use@nalyze grammatical variation in typology, and the
problems in applying them to complex variation patterns. In 83, we intradudtedimensional
scaling and explain its utility for the analysis of complex grammatical variation danggsages. In
884-7, we apply MDS techniques to progressively more complex typolatatadets. In 87 and

88, we use MDS to construct a new analysis of lexical and grammatical aspect.

2. Universals in typology: from implicational universals to semantic maps
2.1. Implicational universals and implicational hierarchies

Greenberg’s seminal work on language universals (Greert#68/1990) introduced the
implicational universal as a basic techniquegktracting universals from cross-linguistic variation.
An implicational universal is in the form, ‘If a language has grammatical property X, #iso ihas
grammatical property Y’, often abbreviated with propositional logic notationasyXForexample,
Greenberg’s Universal 18, given in 1, describes an implicational relationship beddjeetive
noun order on the one hand and demonstrative-noun and numeral-noun order on the other:

(1)  When the descriptive adjective precedes the noun, the demonstrative and the numeral, with
overwhelmingly more than chance frequency, do likewise.

The implicational universals in 1 (there are two) can be abbreviated AdMN and AND
NumN. The first one, AND DemN, represents a universal formulated over the cross-linguistic
variation in grammatical types given in 2, and excludes a language of the type given in 3:

(2) a. AN & DemN
b. NA & DemN
c. NA & NDem

(3) *AN & NDem

An implicationaluniversal thus generalizes over the variation in 2, and represents the universal
as an asymmetrical causal relationship between adjective-noun order and numeral-noun order.

Implicational universals have proven to be a powetdol in typological research. A large

number of universals have been formulated over many different language samples (a sefmmary



many such universals can be found at The Universals Archive at http:/ling.uni
konstanz.de:591/Universals/introduction.html)pharticular, simple implicational universals can be
used to construct more complex patterns, sashmplicational hierarchies. An example of an
implicational hierarchy is that found in Greenberg’s Universal 34:

4) No language has a trial number unless it has a dual. No language has a dual unless it has a
plural. [Trial © Dual and Duab Plural]

When combined with the fact thatemguage with a plural must also have a singular (Piral
Singular), we then have the Number Hierarchy, notated as Singular < Plural < Dual < Trial.

Implicational hierarchies can be defined in terms of seitg@focking implicational universals,
but some phenomena call farmore complex relationship between these theoretical entities and
implicational universals. Faexample, the Accessibility or Grammatical Relations Hierarchy was
posited by Keenan and Comrie (1977) basedhe grammatical relation between the head of a
relative clause and the verb of the relative clause, as illustrated in 6:

(5) a. The boy that _ fell on the sidewalk [Subject]
b. The book that | read _ [Direct Object]
c. The bench that he sat on _ [Oblique]

Keenan and Comrie observe that thare two types of relative clause strategies, which they
called [+case] and [-case]. A [+case] strategy overtly indicates the grammelatah between the
head noun and the relatidause verb; a [-case] strategy does not. For example, there is no
indicator of the Subject and Object functiongted boyandthe bookin 6a and 6b respectively, so
these two relative clausgtrategies are [-case]; but the stranded preposdiom 6c¢ indicates
Oblique locative relation dhe benchand so this relative clause strategy is [+case].

The [+casepnd [-case] strategies both respect the Grammatical Relations Hierarchy, but in
opposite ways: the [-case] strategy is associated with the ‘upper’ end of the hierarctwila 6,

the [+case] strategy &ssociated with the ‘lower’ end (an abbreviated implicational representation

for each is given in 7-8):

1Actually, the formulation of 8 in Keenan and Comrie is weaker: ondyadive clause strategy retaining a pronoun

is associated with the lower end of the hierarchy (Keenan and Comrie 1977:92-93). For [+case] strategies, Keenan
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(6)  Subject < Direct Object < Indirect Object < Oblique < Genitive
(7) [- case]: Genitived ObliqueD Indirect ObjecD Direct ObjecD Subject
(8) [+case]: SubjecDd Direct ObjecD Indirect ObjecD ObliqueD Genitive

That is, the ordering of grammatical relationstie Grammatical Relations Hierarchy is
respected by implicationahiversals of relative clause formation, but differ depending on the type
of relative clause. The Grammatical Relatiétisrarchy has an underlying existence as a language
universal partly independent of the implicational universals wbiaracterize the cross-linguistic
variation dependent on the hierarchy.
2.2. The semantic map model and its theoretical implications

A hierarchy is a linear ranking of linguistic functions. One can describe the grammatical
distribution of specific language constructions as a regiomA® on thelinear structure of a
hierarchy. For example, Keenan and Comrie describe two relative clause constinck@na: a
[-case] strategy used for Subjects and a [+case] strategy used for aljratheratical relations.
The two relative clause constructions Kéra can be mapped onto the Grammatical Relations
Hierarchy as in Figure 1:

FIGURE 1: Relative clause strategies in Kera

The boxesn Figure 1 represent the distribution of each Kera relative clause construction, and

the lines represent the linear ranking of grammatical relations on the (universal) hiefdrehy.

and Comrie make the weaker claim that the strategy covers a contsegousnt of the hierarchy. However, this is
because Keenan and Comrie assigned a negativetagatuposition (grammatical relation) that exists in a language
but is impossible to relativize by any stratetigy only excluded from consideration grammatical relations that do
not exist at all ithe language (* in their Table 1, ibid., 76-79). If the position is treated as undefined rather than
negative, then the stronger generalization in 8 holds, for the hierar¢hy\ife were able to recode Keenan and
Comrie’s Table 1 for all positions listed in the hierarchyjnusing the data from Keenan and Comrie (1979).
Keenan and Comrie (1977) also considered another grammatical relation, oljentpafrison 4 man taller than

me); but Keenan & Comri€l979) do not provide enough explicit information to recode the object of comparison

position. Hence we have excluded object of comparison from 6.



representation in 10 allows one to map the distribution ofrelayive clause construction in any
language on the hierarchy. The representation in Figure 1 thus alhews separate the language
specific aspect ofhe grammar—the map for each construction—from the universal aspect—the
underlyingsPACE of the grammatical relations hierarchy.

The conceptualization of universals and language-specdiegories in Figure 1 was
generalized to more complex relationships thamwle linear ranking. This became known as the
SEMANTIC MAP MODEL, first developed focross-linguistic analysis by Lloyd B. Andersen (1974,
1982, 1986, 1987) and then applied hogny typologists (Croft, Shyldkrot & Kemmer 1987;
Kemmer 1993; Haspelmath 1997a,b, 2003; Stassen 199devakuwera & Plungian 1998; Croft
2001, 2003; see also Bowerman 1996; Bower&abhoi 2001). We will illustrate it here with
Haspelmath’'s 1997a study of indefinite pronouns. Haspeliatttifies nine distinct meanings of
indefinite pronouns, illustratdokelow with examples from English (page references to Haspelmath
1997a):

(9) ﬁpecifi)c known: a specific referent whose identity is known to the speaker (but not the
earer

Masha met witltsomeonenear the university. [speaker knows who] (46)

(10) Specific unknown: a specific referent whose identity is unknown to both hearer and speaker
Masha met witltsomebodynear the university. [speaker has forgotten who] (46)

(11) Irrealis non-specific: a referent (a manner in this example) which does not have a specific
identity and exists only in a nonreal context
Visit me sometime. (42)

(12) Question: an unspecified referent in the scope of interrogation (especially polar
interrogatives)
Can you heaanything? (36)

(13) Conditional: an unspecified referent in the protasis in a conditional construction
If you hearanything, tell me. (36)

(14) Indirect negation: an unspecified referent which is in a clause embedded in a negated
clause
| don’t think thatanybody has seen it. (33)

(15) Comparative: an unspecified referent occurring in the standard of comparison in a
comparative construction
The boy runs as fast asyonein his class. (35)

(16) Free choice: an unspecified referent in certain contexts whose identity can be freely chosen
without affecting the truth value of the utterance



After the fall of the Wall, East Germans were free to tramgiwhere (48)

(17) Direct negation: an unspecified referent which is in the scope of negation in the same
clause
I noticednothing/l didn’t seeanything. (31-32)

Haspelmath argues that the indefinite pronfunttions are arranged in the space as in Figure

FIGURE 2: Conceptual space for indefinite pronoun functions

The cross-linguistic evidence for the space in Figuie the range of meanings occurring with
indefinite pronoun forms in a large sample of languages—ishahe semantic maps for each
indefinite pronoun in each language. A sample set of mapharenes for Rumanian indefinite
pronouns given in Figure 3 (Haspelmath 1997a:264-65):

FIGURE 3: Semantic maps of Rumanian indefinite pronouns

The crucial property of the semantic map for each linguistic catégomhis case, indefinite
pronouns in Rumanian and other languages) is that each category mushtmap connected
region of theconceptual space; the connections are indicated by the lines linking meaning
points/nodes in Figures 2 and 3. For example Rtwmanianvre-unindefinite pronoun series is
used for conditional, question and indirect negation meaningghasd meanings form a single
connected region ithe space of indefinite pronoun meanings. This principle was named the
Semantic Map Connectivity Hypothesis in Croft (2001, 2003).

Ideally, the underlying conceptual space is derived empirically, through cross-linguistic
comparison (Haspelmath 2003:216-1&).range of functions expressed by a certain class of
language-specific categories is arranged and rearranged in a single graph structurtosahthat
sample of languages under investigation, all or almosf @lie language-specific categories satisfy
the Semantic Map Connectivity Hypothesis for that one graph structure. If theremnslarying
universal to be captured, the single graph struatilrfeemerge. The graph structure represented by
the conceptual space is thus derived ftbe cross-linguistic data without prior assumptions about
the semantic and/or pragmatic properties that determine the graph stofi¢cheeconceptual space.

Insteadthe graph structure of the conceptual space forms the starting point for a semantic and/or



pragmatic explanation for the structure of the space and hence the language urihvasrsais
determined by it. Nodes in the graph (spae) presumed to neighbor each other because they
share semantic features. For example, Haspelmath identifiessémeantic features which
incrementally distinguish the nodes as one progresses through the graph struéigmee 2 from

left to right (Haspelmath 1997a, chapter 5).

The semanticnap model allows one to capture a wide range of language universals, including
many not reduciblé hierarchies, and only quite indirectly related to implicational universals. The
semantic map model offers a clear division between what is universal—thesgnagtiaire of the
conceptual space—and what is language-specific—the mappingaunicular grammatical
categories and constructions onto the conceptual space.

Many typologists have treatélde semantic map model as a descriptive device for representing
grammatical universaland their manifestation in particular languages (e.g. Anderson 1982:228;
Croft, Shyldkrot and Kemme£987:186; Kemmer 1993:201; van der Auwera and Plungian
1998:86). There is a plausible model for wtie conceptual space represents, however: namely,
organization of conceptuadtructures in the mind (Croft 2001:92-98, 105-8, 2003:138-39;
Haspelmath 2003:232-33; Anders¢h986:280] refers in passing to ‘mental maps’). The
conceptual space itself, that is, the graph-structingdinization of relationships among linguistic
functions,is hypothesized to represent universal conceptual organization, while the semantic maps
on the space represent language-specific grammatatafories defined by word forms and
constructional roles in particular languages. This theory of the interpretattbe gEmantic map
modelallows linguists to incorporate the universals resulting from typological research into the
representation of linguistic knowledge in the individual speaker’'s mind.ighst surprising in
the context of theéypological hypothesis that crosslinguistic variation is an extension of within
language grammatical variation (81).

The theory behind theemantic map model in representing and explaining language universals
captures the nature of matanguage universals. However, there are a number of problems that

arise with the semantic map model. The first problem is a pracieal Published semantic map



analyses have very few nodes in the graph structure. For example, Haspedtndihsf indefinite
pronouns has only nine functions; Stassaitusly of intransitive predication has five functions;
Croft’s study of parts of speech has nine functions (plus the two additional predication functions
examined by Stassen); van der Auwera Rhohgian’s study of modality has eight core functions.
Small conceptual spaces can be analygetiand. But much typological research deals with many
more data points.

The second problem is theoretical. The semantic map model is not mathemtiroadiyzed,
and there are many implicit assumptions that have not be examineg5(@pe Constructing a
conceptual space is done by hand, agdin has not been formalized, let alone automated. For
example, the use of many languages often leads to anomaloushedsesist be dealt with in a
systematic way. In contrastultidimensional scaling as used in the social and behavioral sciences
is mathematically well understood and computationally tractable. Moreoveahebry behind the
spatial models of multidimensional scaling fits naturally with the cognitive interpretation of
semantic maps in typological theory (83.2).
3. Multidimensional scaling
3.1. An overview of multidimensional scaling

Multidimensional scaling, factor analysis, Guttman scaling (Guttman 1950), résponse
theory (Rasch 1960; Birnbaum 1968), and many other multivariate methods have their otiggns in
work of Pearson (1901), Spearman (1904), and Thurstone (1935) on the testing of ‘mental’
abilities. Factor analysis was thgst of these methods to emerge, and the basic statistical
foundations for it were developed biptelling (1933) and Eckart and Young (1936). The earliest
MDS applicationsused factor analysis (technically, principal components analysis) to analyze
RELATIONAL data — that is, data that could be treated iasniére Euclidean distances between a set
of objects or stimuli (Young and Householder, 1938; Torgers852). For example, people are
asked to judge how similar (or dissimilar) various countries are to each othemmi8ds model
these similarities/dissimilarities as distandastween points representing the countries in a

geometric space (the greater the similarity, sitmaller the distance; the greater the dissimilarity, the



greater the distance). These points form &PATIAL MAP that summarizes the
similarities/dissimilarities data.

In this sense a spatial map is much like a rowgp. A spreadsheet with all the distances
between every pair of sizeable cities in the United States contains therdameation as the
corresponding map of the US, but the spreadsheet gives you no idgaevbi& looks like. Much
like a road map, a spatial map formed from similarities/dissimilarities data is afwagualizing
the underlying structure in the dat&or example, Table 1 shows the driving distances in miles
between eleven US cities and Figure 4 shows the spatial map estimated from the driving distances.

TABLE 1: Driving distances between elevent US cities (dissimilarities)

FIGURE 4: Spatial model of driving distances (dissimilarities)

Similarities/dissimilarities data like the driving distances shown in Table 1 are by traditioa
form of a symmetrionatrix—that is, the rows and columns are the same so that evergfpair
stimuliis assigned a similarity/dissimilarity number (e.g., a correlation matrix). However, in many
applications in the social and behavicsalences relational data are in the form of a rectangular
matrix. For example, th@ws correspond to individuals and the columns to stimuli. If the entries
in the matrix can be interpreted as distances between the individuals and the stimuli, theta the
are suitable for anNFOLDING ANALYSIS (Coombs 1950, 1964). An unfolding analysisdels the
data as distances between tagts of points — one corresponding to the individuals and one
corresponding to the stimuli. The two sets of points form a spatial map that summarizes the data.

Table 2 showsn unfolding example using driving distances. The rows are the eleven U.S.
cities from Table Jand the columns are six additional U.S. cities. Figure 5 shows the spatial map
estimated from the driving distances.

TABLE 2: Driving distances between elevent US cities (unfolding)

FIGURE 5: Spatial model of driving distances (unfolding)

MDS methods became broadly used with the development of nonmmetticdimensional
scaling by Shepard (1962a,bhd Kruskal (1964a,b). Instead of trying to estimate the points

directly fromthe similarities/dissimilarities data, Shepard’s insight was to estimate points that



reproduced the rank ordering of the data. Shepard was interesteel problem of response
functions. That is, when individuals are asked how similar pairs of stimuli ardgetiteyo perceive
objects as being less similar than tlaeyually are with the effect diminishing as the true similarity
increases (Shepart®58, 1987). This response function tends to be exponential or Gaussian
(Shepard 1987, 1988; Nofosky 1988; Ennis 1988a,b). By reproducing the rank ordénmglata
the distortion of the similaritiedata due to the response function is no longer a problem. Kruskal
then developed a practical armbust algorithm to find the points that best reproduced the rank
orderingof the data. The work of Shepard and Kruskal culminated in the development of the
widely usedscaling programs KYST (Kruskal, Young and Seery 1973) and ALSCAL (Takane,
Young and De Leeuw 1977).

Parallel to the evolution of MDS in the 1968%d 1970s was the evolution of Guttman scaling
into modern item response theory (IRT), used widely in educational testing applicdr$.and
IRT make very different assumptions about da¢a. In educational testing applications the test
takers are assumed to have a levelllity and the test questions a level of difficulty. Test takers
should answer every questioarrectly at or below their level of ability. If someone can correctly
compute a triple integral of a complex functitthen that person should be able to answer
elementary algebra questions correctly. Consequently, if ‘1’ represents a correctam$wer
represents ammcorrect answer, and if the questions are ordered by degree of difficulty then an

individual’'s answers should look like

11111100000000000 ...
or
11111111110000000 ...
or
11100000000000000 ...
etc.

Thisproduces a rectangular matrix of data in the same form as an unfolding problem, but the
data cannot benterpreted as distances between two sets of points. However, unfolding can be
applied toa matrix of binary data if that data can be interpreted as relational. For example, in

parliamentary roll call voting legislators vote ‘Yea’ or ‘Nayhen a motion is put on the floor.
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The ‘Yea’ and ‘Nay’ correspond to two differguaicy outcomes and in an unfolding context the
legislator votes fothe alternative that is closest to her personal preferenaegAar POINT. In a
one-dimensional world with no voting errors the pattern of the Yeablaysl will look exactly like

a classic Guttman scale (Weisberg 1968). The diffigrence is that on some votes the Yeas may
be the ‘1’s and on other voté®e Nays may be the ‘1’'s. Other than this polarity difference, data
generated by the two models are observationally indistinguishable.

In a remarkable convergence of disciplines, at the same time that psycholagistsloing
studies of similarities and preference usingdéhdy MDS techniques, philosophers, economists,
and political scientists were developing the spatial theory of v@totelling 1929; Smithies 1941,
Black 1948, 1958; Downs 1957 its simplest form the spatial theory of voting can be
represented as a spatial map of voters and candidates where thgotetéos the candidate closest
to them. In thigegard, a spatial map is literally a visual representation of the spatial model of
voting. A rigorousmathematical structure for spatial theory was later developed by Davis, Hinich,
and Ordeshook (Davis and Hinich 1966, 1967; Davis, Hinich, and Ordeshook, 1970).

By the early 1970s the mathematical structure osgiaial theory was largely completed. The
dimensions of the space represent issues/policies. Each vot@rguasition on each issue/policy
and this vectoof positions is the voter’'s ideal poiimt the space. Each voter also has a utility
function centered on her ideal point that assigns a utility to each point in the spaéatfdrea
point is from the voter’s ideal point the lower the utility. Each candidatehals@ position on each
dimension and therefore is represented g®iat in the space. Each voter then votes for the
candidate for whom she htge highest utility. In the context of parliamentary voting the model is
exactly the same, except thmlicy outcomes (‘Yea’ or ‘Nay’ on legislative motions) are now the
choices rather than candidates for public office.

In a perfect one-dimensional model of parliamentary voting, for each policy outcome the ideal
points representing all dhe legislators voting ‘Yea’ will be ranged on one side @UaTING
POINT for that outcome and those for all of the Nay voters on the other side aittimg point.

The cutting point ithe mean between the position of the ‘Yea’ policy outcome and the ‘Nay’

11



policy outcome. In a two-dimensional model, there will mJaTING LINE for each outcome which

is theperpendicular bisector of the line joining the two outcome points. The cutting line separates
the ideal points representing the legislators votifen’ from those voting ‘Nay’. (This can easily

be generalized to higher dimensions.) Of course, autgtl behavior is not perfect in this respect,
and MDS is used to findleal points and cutting lines that maximize correct classification (that is,
placement of the agents’ ideal points on the ‘right’ side of the clittimdor their actual choice of
outcome, for all of the outcomes in the data).

Parallel to the findings of psychologists using MDS, early attebyptconomists and political
scientists to estimate the spatial model found tftnumber of dimensions of the spatial maps
appear to be three or less andnost applications two dimensions seem to adequately account for
the data. This wassurprise because the large number of issues that form the basis of politics in
most nations clearly pointed to high dimensional decision spaces.

The key to the puzzle was the fundamental insigi@arfverse (1964) that issue positions tend
to be highly correlated: so correlated that just the knowledge of onepssitmn allowed an
observer to predict the remaining issue positiomscontemporary US politics the knowledge that
a politician opposes raising the minimum wage makeistually certain that the politician opposes
universal health care, opposaffirmative action, and so on—in short, a conservative and almost
certainly aRepublican. Within the spatial theory of voting this means that issue positions lie on a
low-dimensional plane through tiesue space because attitudes across the issues are constrained.
The presence of constraint medhat a voter's positions on a variety of specific issues can be
captured by her position on one or two fundamental dimensiaeis as liberalism/conservatism.
This impliesTwo spaces — one with a few fundamenmtiahensions and a second high-dimensional
space representing all the distinct issues. For example, suppose thdtsdeenental dimensions,

p voters, and g issues where s < g. Xdte the p by s matrix afieal points of the p voters on the
s dimensions and l&t be the p by g matrix of voters’ ideal points on the q issues.pidsence of
constraint means that the voters’ positionsthe fundamental dimensioXsgenerate all the issue

positionsY; that is, XW =Y where the s by g matrl¥ maps the fundamental dimensiago the
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issue dimensions. Under this interpretatitre, low dimensional maps produced by the various
scaling procedures discussatiove show the low-dimensional space underlying individuals’
evaluations—the X space’—notthe high-dimensional issue spac¥—Cahoon, Hinich and
Ordeshook 1978; Hinich and Pollard 1981).

This two-space theory was an important breakthrough and paved the way forlideleatgyee in
political science on estimating spatiaiting models. Although to our knowledge the two-space
theory hasiot been used in psychology to bridge the gap between what appear to be complex
decision problemshat turn out to generate low dimensional spatial maps, it would seem that it
would be a natural application of the two-space framework.

3.2. Multidimensional scaling in grammatical analysis

MDS is a technique for measuring similarity and dissimilarity between the eriiiesg)
analyzed. This technique is suitable for the modgrammatical variation and language universals
described in 82.2. The grouping of functions under a single form in a language, susmgte
indefinite pronoun form, or the occurrence of woodsphrases in a constructional role, such as
grammaticatelations in a particular relative clause construction, is taken as evidence of similarity.
The groupings of functions or role-fillers under a single worcboistruction varies from language
to language (and also from speakerspeaker within a language, although this dimension of
variation will largely be ignored in this papér).

The application of MDS to linguistic data is straightforwaithe rectangular matrix
corresponds to a table describing the distributional analysis of the datawiheorrespond to the
meanings or functions that are being expressed, or the fillers of the syrdksjcand the columns
correspondo the morphemes, words, or constructions that are conventionally used to express the

function in the languages in the sample. The type of matrix required is illustratesuiioset of the

2However, not all crosslinguistic data involves similarity. Word order is one example. Occuofeme order (e.g.,
genitive-noun order) correlates with another order (e.g., noun-adposition order) in highly compleandakere are
no properties thatross-cut word orders. Other multivariate techniques are required to analyze the variation in word

order correlations, such as log-linear analysis (Justeson & Stephens 1990).
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data for the Grammatical Relations Hierarchy in Table 3 laspelmath’s indefinite pronoun
analysis in Table 4 (1 = acceptable, 0 = unacceptable, blank = missing data):

TABLE 3: Sample distribution pattern of relative clause strategies.

TABLE 4: Sample distribution patterns of indefinite pronouns.

The most applicable MDS technique for the analysis of the kinds of binary matricaisleas 3
and 4, most ofwhich are small, is a nonparametric unfolding algorithm such as the Optimal
Classification algorithm developed by the second author (Poole 2000). Isp#ti@l models
resulting from the MDS analysis, the points represent the ideal bitlie functions or meanings
with respect to the forms used express them. The cutting line represents a form (word or
construction). The cutting line for each form separates the functions exprested foym from
those not expressible by the form.

The theory behind an MDS analysis is the saséhe theory behind a semantic map analysis.
The similarity relationgnd the semantic dimensions of the space are hypothesized to be part of a
human speaker’s conceptual organization. The categories dbfirtté words or constructions of
a particular language are delimited by the cutliimg for that construction. As in the semantic map
model, the conceptual space is the same for all speakers, but the cutting lines in the capag@ual
vary from language to language and from construction to construction. The multidimensional
scaling model allows one identify what aspects of conventional grammatical knowledge of an
individual speaker are attributable to general principles that are valid across languages.

Theanalyst can interpret the properties of the representation as corresponding to some real
phenomenon (say, a property of human cognition). The Euclidean progieatiesn be interpreted
in an MDS analysis are the distances between points and the dimensionspaicthencluding the
number of dimensions. But those interpretations of the representation are intecdecspond to
some real properties of human cognition. It almost certainly is pbysical spatial dimensional
structure in the brain, but it presumably reflects someo$ardonceptual dimensions and groupings

in the mind, emerging from human interaction with the world. Most important, M&& not

14



require the analyst to assume any a priori set of semantic features; the relevant featurdsamerge

the resulting spatial model.

4. Scaling in one dimension: grammatical relations

As we observed in 82.2, one can represent implicational hierarchies as one-dimensional
semantic maps. Implicational hierarchies can take the form of a complete rankingtimns, as in
the Grammatical Relations Hierarchy, or as a partial orderirggses where the empirical evidence
is equivocal about the ranking of functions. In this section, we illustratesthef multidimensional
scaling to obtain a ranking from grammatical data.

Our example is the data from relative clause formation used by Keada@Gomrie to establish
the Grammatical Relations hierarchy (Keenan and Comrie 1977:93). Keenan and Gunnniz'y
data in support of the Grammatical Relations Hierarchy is the distributiprcase] and [-case]
strategies (Keenan & Comrie 1977:76-79; see also Keenan and Comrie 152\ ime noted
that in fact the Grammatical Relations Hierarchy governs different types of relative clause
constructions, [tcaseqnd [-case] constructions. Keenan and Comrie’'s table gives the data
supporting the Grammatical Relations Hierarchydidtributional matrix was made up for the
[tcase] and [-case] strategies for the languages in the sample. Optional and altesastiveere
assigned ‘yes’ for both strategies, and if no data were available or relativiabtioa relation is
impossible in the language, the relevant cells were left blank. There were 49 langudgesan
and Comrie’s data and the total number of ‘choices’ (data points in the matrix) was 330.

The MDS ranking replicates the Grammatical Relations Hierarchy perfectly:

TABLE 5: MDS ranking of grammatical relations.

The correct classification is 99.7% (329 of 330 data points). The analysis predbcgs72
matrix (some data were discarded because they weamimous’, that is, all functions used the
sameform) which is Guttman-scale-like in structure. With this type of data, a one-dimensional
scaling caronly produce a rank order (Poole to appear, chapter 2). Thus, MDS easily derives the
universals represented by an implicational hierawitly no or virtually no exceptions, such as the

Grammatical Relations Hierarchy using the language sample investigated by Keer@onamel
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We conclude this section by discussing the status of anomalous data, or ‘classification errors’ as
they are called, such as the single classification error in Table 5.

A technique such asultidimensional scaling accounts for as much of the variance in the data
as possible. In the case of the linguistic analyses we appipdtied to, the data ultimately are
speaker behavior, asterpreted by a linguist. The behavior may be the product of elicitation tasks
or from the examination of corpora. Thehavior is interpreted by a linguist who must summarize
over speaker elicitations or corpus tokens, and publishes the datfenesce grammar or another
source. The data are therefore not necessarily the outcome of the actual causal fad&iesrtiiae
grammatical decisions in language use. Thegy be due to speaker misunderstanding of the
elicitation task, the vagaries of transcription in the corpug,sirpurely random behavior on the
part of the speaker on the particular occasion. How do statistical techniques BURS aeal with
these other causes of variance (‘errors’) in the data?

The other causes of variancan be categorized into three kinds: truly random behavior on the
part of the speaker; sporadic ‘erroesid some artifact of the elicitation task design or the corpus
collection method.

It is quite possible that some grammatical choicegfpression are truly random, other things
being equal: a speaker can make different grammatical choices in a single context andnhthere is
factor pushing her one way the other. We do not rule out the possibility of true randomness in
linguistic behavior. But statistical techniques like MDS are designed precistpwothe extent to
which data deviate fromure randomness. One purpose of the fithess statistics is to measure how
well a spatial model fits the data being modeled.

Some sorts of ‘errors’ represent sporadic behavior: one speaker misunderstarstisittien,
or a transcription error leads to the recording of the wrong form in a sentence in the l€dhase
phenomena occur sporadically, this implies that they are infrequent. Also, sporadiarertaighly
unlikely to deviate from the expected value in the same directiterrdfrs’ are truly sporadic, they

will ultimately be averaged out over the whole of the data analyzed.
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In some cases, the ‘errors’ are systematic. For example, most or all sgethieers might
misunderstand the elicitation instructions in the same way, and the speakeior would be an
artifact ofthe task design. This will have a noticeable effect on the results. But it will then be one
factor among many in the analysis of the result. If the effect is large enbughpe detectable by
itsanomaly in the interpretation of the overall pattern of the phenomena. It so happens that in the
Grammatical Relations Hierarchy examplgove, the ‘error’ is a result of the design of the study,
namely the assumption of universal grammatical relations. The ‘error’ is Tomgah, exhibits an
ergative/absolutive relative clause formatipattern (Keenan & Comrie 1977:86-88), not a
nominative (subject)/accusative (direct object) oke.a result, a [-case] strategy is found in the
‘direct object’ (actually, absolutive) rol@llowing for different types of grammatical relations
across languages, the Grammatical Relations Hierarchy can be maintained in a suitablforewvised
(see Croft 2001, chapter 4).

Finally, of course, the more data is used—more speakers, more langmagesyords or
constructions—the more likely that trulgndom behavior will be swamped by structured behavior
if it exists, the more likely sporadic effects will be averaged out, anehdine clearly artifacts of the
task design (if serious) will manifest themselves. Thus, we can be confident tisatuatyre in the
output of a multidimensional scaling analysgpresents a real empirical phenomenon that must be

explained by linguistic theory (see also Dryer 1997; Croft 2003:51-52).

5. Higher-dimensional scaling and semantic maps

Multidimensional scaling produces a spatial representation of similarity. As afiplieduistic
phenomena, it produces a spatial representation of similarity for afsectbns as determined by
their grouping under a single word formaanstruction in a language, generalized across different
forms and across differetanguages. In this respect, it looks very much like the semantic map
model. In 85.1, we comparesamantic map analysis to an MDS analysis of the same data, and in
85.2 provide a general comparison and critique of the two models.

5.1. Comparison of the semantic map model and MDS: indefinite pronouns
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Our second example is a much larger dataset which neverthelessdemsseemantic map. This
is Haspelmath’s analysis of the meanings or functions of indefinite pronouns, illustré82d.
Haspelmath’s conceptual spdoe indefinite pronoun functions was given in Figure 2, and the
semantic maps for Hungarian indefinite pronoumsFigure 3. Haspelmath’s book contains
semantic maps for 4@nguages (Haspelmath 1997a, Appendix A). In this sample, there are no
classification errors, that is, the semantic map for every indefinite pronoun in the lasgogge is
mapped onto a connected subgraph in the space. The conceptual speaide dst in an
approximately linear fashion, but tlmgghtmost functions (direct negation and free choice) are
unlinked.

Figure 6 is a two-dimensional MDS analysis of the same dataaf@/erateful to Martin
Haspelmath and Dorothea Steude for providing us with the file containing the data.)

FIGURE 6: Two-dimensional model of indefinite pronouns
The data formed a 9 x 139 matrix: there are mefinite pronominal meanings mapped, using
data from 139 pronouns in tHd® languages. This matrix is not Guttman-scale-like because the
cutting lines can go in any direction, and therefore there is ncscale that accounts for the
distributional pattern in the matrix.

In interpreting the spatial arrangement of points in the display, one should noboeadich
into their exactpositions. MDS is an approximation method. The points are supposed to be
arranged in such a way that a line (in a two-dimensional display) will separate taadidbut’
members of the category defined by the word or construction witHets¢ error, for each
word/construction used e data. The final display is the result of successive approximations of
the positions of the cutting lines and the points. In fact, the intersection of all the tnésdefine
regions(called POLYTOPES within which the point is located. If there are few cutting lines, those
regionscan be large and the points could be anywhere in the region. With more cutting lines, the
positions of the points is more precisely estimated. Figure 7 presents 139 cutting littes for
indefinite pronoun space, many of which are identical.

FIGURE 7: Cutting lines for indefinite pronouns
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The position of eight of the meaningse quite precisely approximated. The indirect negation
function is in an open polytopés point may occur anywhere further outwards in its polytope.
Giventhe approximation function, the most significant properties of the positions of the points in
an MDS display is the clustering that is obserwedwell-structured data, and their general
configuration along the dimensions of the space.

The number oflimensions on an MDS display is significant, and is not an a priori choice on
the part of the analyst. Instead, the number of dimensions depetigis properties of the data.
Two statistics areised to determine the number of dimensions. The first is goodness of fit—how
many classification errors in the mod&he second is aggregate proportional reduction of error
(APRE)—a comparison of how much closer the model is to the actual classificatigared to
the null model (where all tokens are classified as belonging to the majority category), calculated as:

Total tokens in minority category - total errors
Total tokens in minority category

(18)

If there is a large jump in these two statistics when a dimensiadded, then the higher
dimensionality is better. If the two statistics are leveling out when a dimeissenided, then the
lower dimensionality is a bettaepresentation of the structure of the data. Using a higher
dimensionality givesess structure: at some point, there are enough dimensions that any subset of
points can be separated from its complemengabset of points in the space. At this point, the
structure of the spatial representation is completely uninformative (compare Levinsdn et
2003:499, fn.7). In other words, the number of dimensions required to make the classification
100% correct is often not the best representation of the structure of the data.

The fitness statistics leave no doubt that a two-dimensional model is best:

(29) Dimensions Classification ~ APRE

1 90.8% .685
2 98.1% 934
3 100.0% 1.000

In two dimensions, there are only 24 errors across 1250 data points.
As might be expected from data that is very well-behavdlle semantic map model, the MDS

display is highly structuredThe points are arranged in a horseshoe shape. This pattern is a
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common result in MDS (Borg and Groenen 1997). It represents a basicallyrépessentation.

To understand why is curved, consider again the one-dimensional grammatical relations analysis
in 82.1. A cuttingooint/line requires all of the points on one side to be “in” the category, and all
the points onthe opposite side to be “out” of the category. For the Grammatical Relations
Hierarchy, this yields a straightforward one-dimensiarallt. This is because a [-case] relative
clause strategy will include all points to the left of the cutpogit and a [+case] relative clause
strategy will include all points to the right of the cutting point.

However, the indefinite pronoun space does not work this way. Pronouns may map onto
middle part of the scale. For example, the cutting lines/semantic foagdumanian indefinite
pronouns are given in Figure 8:

FIGURE 8: Cutting lines for Rumanian indefinite pronouns
In Rumanianthe vre-un series of indefinite pronouns is used for the question, conditional and
indirect negation functions, but not functions at either end of the conceptual Sppaeethe cutting
lines are straight, the spatial model of indefinite pronouns must be curved.

The analysis of the horseshoe pattern is confirmed by examiniegttirg lines for individual
constructions:

FIGURE 9: Selected cutting lines for indefinite pronouns

The arrows on the cutting lines iigure 9 show which side of the line represents the uses
included in the grammatical category (the indefinite pronousgritbe seen from Figure 9 that no
map (cutting line) includes the two ends of the horseshoe, ‘specific kaorifree choice’. This
fact indicates that these form the ends of the curved linear organization of this semantic domain.

The MDS display does not hattee graph structure of the semantic map model. The graph
structure is superimposed on the MDS display in Figure 10:

FIGURE 10: Spatial model with graph structure of semantic map model

However, geometric distance is a close analog to the graph structure. Givere tkiadw the
horseshoe arrangement represents a curvilinear structure, mihgt ks join points to their

nearest neighbors along the horseshoe. If indirect negation were moved further awaglyiope,
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then the absence of a link betwegnlirect negation and conditional meanings would be
geometrically more plausible. While the MDS display does not catitaréinks in the semantic
map model’'s graph structure, the nearest-neighbor distance relation in the overalsspatiate

can be useds a starting point for identifying links. In the case of less clearcut patterns of
grammatical variation, the distance relation is a more powerful representatioancéptual
similarity.

In the MDS display, distance is significarithe links from the semantic map model
superimposed on the MDS display in Figure 10 differ in their length. The Itingsrrepresent
functions lesscommonly grouped under a single indefinite pronoun, and the shorter links,
functions more commonly groupedder a single indefinite pronoun. For example, it can be seen
that the specifiknown and specific unknown indefinite meanings are most commonly grouped
under a single pronoun. This fact can be interprasenplying that the known/unknown semantic
distinction for specific indefinites, while linguisticallyignificant, is not as significant as other
semantic distinctions, such as that between the irrealis nonspecific functionome thand and the
condition andquestion functions on the other. This information is not available in the standard
semantic map model, in which length of links is not significant.

5.2. Multidimensional scaling and semantic maps compared

Although MDS and the semantic map model aegy similar, there are some important
differences, and on the whole, MDS provides a superior analysis of grammatical variation.

MDS produces &uclidean display. Similarity is modeled in terms of Euclidean distance
between points in the representation. The number of dimensions for the best fit is deterrtiieed by
structure of the data. The dimensionality of the display is critical in constrapusgible
relationships between points (meanings or functions in a linguistic applicationhidler the
number of dimensions, the easier it is to have every point near everyaoitiein some dimension,
and theexplanatory value of the representation is lost, since there are few or no constraints on

nearness between points.
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The semantic map modelespite its name, is a graph structure. Similarity is modeled in terms
of the number of links and intervening nodes between two given modhe representation. No
means has been suggestecesirict possible links between nodes, comparable to the limitation of
number of Euclidean dimensions in MDS. In theory, then, one could have links jamyngode to
any other node. In such a case, the graph structure obticeptual space would be uninformative.

In practice, typologists have constructed graplts no crossing links in a projection of the graph
onto one or two dimensions (e.g., Figures 1 and 2). That is to say, the sensgntiepresentations
actually used by typologists arevaxture of a graph representation (with links representing the
constraints imposed by the Semantic Map Connectivity Hypothesis) gadmetric representation
(to impose a constraint on possible links).

The MDS model’'s Euclideasimensions, as well as the distance relations between points (the
clustering), have theoretical significance. That is, one can provide a theargégadetation—in our
case, a linguistic semantic or functional interpretation—of the dimensions of the Euclideatrspace.
contrast, the semantic map model is not a Euclideasel. Even when projected onto one- or+wo
dimensional space, the actual positions of the nodes omrtjection is a matter of visual
convenience (subject to the restriction against crossing links betveeks). In other words, the
dimensions of the Euclideaprojection cannot be interpreted theoretically (cf. Haspelmath
2003:233).

The MDS equivalent of a semanti@ap for a grammatical category is a cutting point (in a one
dimensional display) or cutting line (in a two dimensional display;ntioee general geometric
figureis a hyperplane). A cutting line (in two dimensions) must be a straight line such that, in an
error-free classification, all functions grouped in the particular linguistic form or construction are
one side of the line, and dlinctions excluded from the form/construction are on the other side of
the line. Thus, in the MDS model, the only semantic maps allowed are a linear or planar kadection
the conceptual space.

A semantic map in the semantic map matkt be of any closed shape in the one- or-two

dimensional geometric projections currently used (see Figure &). énror-free semantic map, the
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functions inside the closed shaped form a connexbdraph. The functions outside the closed
shape need not form a connected subgraph, however. There is thus figzdnéity in the
geometric shape grouping together related meanings or functions in the semantic map model.
The spirit of the semantic map model and MDS is basically the same: to construct a
representation of complex similarity relations among a set of functions, given empiricalf data
different groupings of those functions. Nevertheless, there are sigmécant representational
differences. The semantic map model allows nilerdble maps, but its graph structure is more
restrictive than a Euclidean distarmoeasure. The MDS display has more rigid maps, but distance
and the actual dimensions of the spatial representation are theoretically significaltD3n
displayof highly structured cross-linguistic data produces a representation that largely captures
much of the information in the semantic map model, and eddisnation about which semantic
distinctions are more/less significant for speakers of languages. Last but not lessshahéc map
model is mathematically not well defined and computationally difficulinfdlement. It appears that
the problem of finding the conceptual space with the minimum number of links between nades for
given set of cross-linguistic data is akin to the traveling salesman problem, whkiobwia to be
NP-hard. MDS,on the other hand, is mathematically well defined, and powerful algorithms are

available to analyze large amounts of data using currently available computing power.

6. Dissimilarity vs. unfolding: spatial adpositions

We are not thdirst to apply multidimensional scaling to linguistic questions. Psychologists
have examined similarity in lexical categorization for word meaning in two-tlaee-language
comparisons (e.g., D’Andrade et al. 1972; Rapoport and Fillenbaum 1972; Malie8%|.2003).
More recently, linguists at the Max Planck Institéde Psycholinguistics in Nijmegen have also
begun to use MDS fdryoth grammatical and lexical semantic typological analysis (Levinson et al.
2003; Majid et al. 2004). In thisection, we compare Levinson et al.’s dissimilarity MDS analysis
of spatial adpositions in nine languages to an unfolding analy8ie game data. (We are grateful

to Sérgio Meira for sharing with us the data files and fitness statistics for their MDS analysis.)
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Levinson et al. compare these of spatial adpositions for 71 pictures representing 71 different
spatial configurations adbjects. The data were collected from speakers of nine languages: Tiriyo0,
Trumai, Yukatek, Basque, Dutch, Lao, Eviavukaleve and Yélidnye. Since Levinson et al. were
primarily interested in crosslinguistic variation, and tlkg not want the results to be biased
towards the languages with data from many speakers, they reduced speaker \mriatisimple
formula (Levinson et al. 2003:503), which we follow here.

Levinson et al. used a dissimilarity method for thgiDS analysis. They constructed a
symmetrical7l x 71 dissimilarity matrix using an algorithm to compute the dissimilarity of every
pair of pictures according to how frequertthe pictures were or were not described with the same
adposition (see Levinson et al. 2003:503-4 for details). They A8&CAL (SPSS 7.5) to
construct an MDS analysis of the dissimilarity data. The results are displayed in Figure 11.:

FIGURE 11: Spatial modelof adpositions by dissimilarity (Levinson et al. 2003, Fig.

10)
The measure of fit used in ALSCAL is S-STRES$ioamalized sum of squared error measure
(the lower the value, the better tg. The S-STRESS for this analysis is .286 in two dimensions,
which is neither very good nor very bad. Tlearson r-square between the actual dissimilarities
and the reproduced dissimilarities is .755, which is not too bad.

Levinson et al. identified five semantic clustdrs their analysis: ATTACHMENT, IN,
NEAR/UNDER, ON-TOP and ON/OVER. The#DS analysis also contained a large number of
points scattered on the left hand side (x < -1). Manyhoée points describe ATTACH type
relations, while several are semantically similar to other clusters.

Poole’s Optimal Classification unfolding algorithmas applied to the same rectangular matrix
used as input to Levinson et al.’s similarity matthat is, the classification of pictures for each
adposition in each language. The results are displayed in Figure 12:

FIGURE 12: Spatial model of adpositions by unfolding
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The size of the matrix is 71 x 113 (71 pictures, 113 tdpbsitions). The result is over 95.8%
correct classification with an APRE of .501. This fit is very good giverojsdedness of the data
(see below).

The overall configuration is basically the same—our displayratated 90 degrees
counterclockwise from Levinson et al.’s. The IN cluster is atawver left; the ATTACH cluster is
center right, and the ON/OVER cluster is combined with the ON-TD&ter at the top. The
unnamed ‘point’ to the upper right of picture 64 is the NEAR/UNDER cluster; it is so cothagct
the points are on top of each other. Pictures 64 (man behind chair) ggdirb3stuck under
tabletop)are outliers; Levinson et al.’s analysis placed them in the NEAR/UNDER cluster. There
are two small intermediate clusters. The beaveen IN and ATTACH consists of pictures 18, 30,
39, 51 and 62. All but picture 51 involve a Figure ‘through’ a round opening in the Gronnd
other words, partial containment and partial attachment.sifadl cluster between ATTACH and
the ON/OVER/ON-TOP clusters consists of picture 3, 7, 11 and 23. All but pictuase1dome
type of surface attachment (thouilple semantically similar picture 68 was placed in the ATTACH
cluster)—in other words, both surface contact/support and attachment.

The overall configuration of clusters is the same, andltisters are almost all the same, in the
two analyses. This demonstrates the overall robustfetfee multidimensional scaling analyses.
However, the unfolding analysis is better ablelassify the data than the dissimilarity analysis.
The scattered points to the left of Levinson et al.’s analysis are now assigokedtérs. The
ATTACH type pictures are in the ATTACH cluster, and most of the other pictures are in clusters
with which they have a reasonable semantic relationship. Likewise, the merging of the ON/OVER
and ON-TOP clusters makes semantic sense; the ON-TOP topological relation is @tveen
(contact and verticaupport) and OVER (non-contact but vertical orientation). In other words, the
clusters irthe unfolding analysis are semantically more coherent than those in the dissimilarity
analysis.

The reason for theifference in the results is the nature of the data and the different methods

used. The data is very lopsided: many adpositemes used for only a very small number of
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pictures. Around 75% of the adpositions are used for less than 5% of the picturéissirhiarity
method constructs a (dis)similarity matrix as input to the MDS analysis. &ios¢ of the
adpositions have such lopsided distributions, most of the values in the similarity anatgging to
be very close together. As a result, there is going to be a fair degree of indeterminacy in the result.
The Optimal Classification algorithm is an unfoldialgorithm. It begins directly with the
distributional matrix: pictures as rows, each adposition fach language as columns, with values
indicating whether the adposition is used or not. It does not construct a dissimilatiby. It is
therefore able togive statistically better fitting results—which are also linguistically more

coherent—to lopsided data.

7. Tense and aspect: nonparametric and parametric methods

In the second half of this paper, we propose an analygisnse and aspect based on MDS
analyses of two different datasets. The first is a large dathsatse-aspect constructions collected
by Dahl (1985), analyzed in thégction. (We are grateful to Osten Dahl for generously providing
us with the original data files, answering many questions about formabdmd), and in checking
data against the original questionnaires, collected over two deagdgsWith a larger dataset, it
becomes useful to use parame#aiscwell as nonparametric techniques to analyze data. The second
dataset is a lexical aspect dataset analyzed in 88.

Dahl designed a questionnaire witB7 sentence contexts in order to elicit tense and aspect
constructions. Some contexts included two or three differenils whose tense-aspect construction
was coded. Dahl coded the verbs in a single context with an additional digit, so tleagrimie,
context 1892 represents the second verb coded for sentence 189. Thertovadraf 250 contexts
(for the contexts, see Dahl 1985:198-206).

Dahl obtained questionnaire results for l6Aguages, collected by native speakers or field
workers (for the list of languagesge Dahl 1985:39-42). The data were coded by the construction
employed in each language (that is, the construction codes are specific to the pEtigukzge). If
more than one construction was considered acceptable or cortireanall constructions were

considered options for that verb context.
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The codes represetite combination of tense-aspect constructions for a particular language.
For examplea Modern Arabic Copula combined with Imperfective is coded ‘K1’, while the
Imperfective found in any verb is coded ‘1’. Thus, Copula + Imperfective is traa@atompletely
distinct construction from Imperfective. It is in principle possible to split the codes, so that for
example a code ‘1’ would cover Imperfective withvathout Copula, and a code ‘K’ would
represent the copula. However, splitting codesild be extremely time-consuming and complex
task, andhe data file includes codes for constructions other than those discussed in Dahl (1985),
whose identity woulahot be easily recoverable (Dahl, pers. comm.). Fortunately, it turned out that
the results with the combination codes were sufficiently robustsihldating the codes became
unnecessary for the purposes of this paper.

The best analysis for the data is a two-dimensional configuration:

(20) Dimensions Classification ~ APRE

1 94.4% 272
2 96.6% .396
3 97.0% 462

The matrix of data is 250 1107. We used a threshhold of 0.5%, that is, a construction had to be
used for a minimum of 2 contexts in order toibeuded. This is an extremely low threshhold;
even s0,/26 constructions were not used. Because this dataset is large, we can apply powerful
parametric methods based on the standard IRT model (881)sed a two-parameter IRT model
in two dimensions. The estimated dimensions were essentially the sapredased by the
nonparametric method?4 between the corresponding first dimensi®s94 andr? between the
corresponding second dimensions is .89).

We then compared the results of the MDS analysis Rathl’s original analysis. Dahl posited
a series of crosslinguistic prototype semantic tense-aspect categories, defined by afchesber
contexts. Dahl began with his presumed crosslinguistic tense-aspect categatiessed a
clustering program to confirrthe prototypes and to identify the clusters of contexts and the
language-specific categories associated with each cluster. Dahl's prototyfisedran Table 6,
with the one-letter codes we uselow, and the total number of contexts that Dahl identified as

belonging to the cluster.
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TABLE 6. Dahl’'s tense-aspect prototype clusters.

Dahl did not propose crosslinguistic prototypes for PreseRast tense or for Imperfective
aspect, although he did propose a prototype for Past Imperfect. Dahl arguinsbatategories
commonly function as “default” categories in the sense that their application depends on the
non-application of some other category or categories’ (Dahl 1985:63).

Dahl ranked verlcontexts for each prototype category according to how many language
specific categories of the type (e.g., PROGRESSIVE) included that verb colitettie
crosslinguistic prototype were valid, then certain contexts would recoaiy constructions across

languagesFor example, a sample of the contexts for PROGRESSIVE is given in 21 (Dahl

1985:91):
(21) Rank no. No. of categories  Examples
1 26 831
2 24 51
3 23 61
4 22 91101111
7 21 71121 1551
32 5 131 141 282 981

That is, 26 languages usadProgressive for context 831, 24 languages used a Progressive for
context 51, and so on; there is a three-way tie at rank 4 for contexts 91, 101, 1ttle kvadest
ranked contexts were those where a Progressive is used in only five languages.

The contexts—each a single data point in the MDS display—were assigoeetletter code
reflecting Dahl’s crosslinguistic prototypes. The contexts wesided into two groups, core (at or
above the median rank) and peripheral (below the median rank). Many comtextsed in
multiple prototypes. This is due to the fact tkame contexts are combination categories, for
example a sentence context such as future perfect would belong to both theafatyperfect
prototypes; othat some contexts represent categories often included in other prototypes, e.g. a
contextin the Habitual-Generic prototype is frequently also included in the Habitual prototype.
Contexts listed in multiple prototypes in Dahl (1985) were assignedsiagle prototype by the
following algorithm: (i) If the context is included in tlmre group of one prototype and the

peripheral group of another, it was assigned to the prototype of the core gragsunee that core
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contexts are more central to the crosslinguistic category. (ii) If the context is incluttex ¢ore
groups of more than one prototypeewas assigned to the prototype with the fewest number of
contextsthus narrowly defined prototypes survive, while more broadly defined prototypes can be
defined as supersets including the more narrowly defined prototypes. Contexts whichotvere
assigned to any prototype by Dahl were coded with an asterisk.

These codes are displayed in the two-dimensional MDS display in Figure 13.

FIGURE 13: Spatial model of tense and aspect with Dahl’s prototypes.

The codes cluster extraordinarily well from a semantic poinvies, even though the data is
even more lopsided than thdposition data in 86. However, the clusters do not always agree with
Dahl's posited prototypes. As might be expected ftbeir shared semantics, Perfective, Perfect
and Pluperfect, and the smpibtotypes Experiential (Perfect) and Quotative cluster together. This
is a spatially large cluster, with a fair degree of separafighe functions that Dahl identified. The
Perfective sentences form the upper right vertical slficthe cluster, with the Quotative near the
center of the verticarea. All of the core Quotative contexts are also core Perfective contexts. The
Quotative contexts do not form a subcluster within the Perfective cluster; but they aretbatfew
one should not infer too much from this fact.

The Pluperfect, Perfect and Experiential functions identified by Dahl form the lefiyesut are
partially separated in the order given, from left to (lower) right. In fact, the contexts formiogréhe
of Pluperfect, Perfect and Experiential in Dahl's analysis overlapgireat extent, and overlap with
both core and peripheral contexts for the Perfective upiper part of the cluster (0.4 >y > -0.05)
is solely core Perfective (including Quotative). Thaldle part of the cluster (-0.05 >y > -0.4)
contains contexts that are both core Perfective and peripheral Perfect, shiftingRtuperéect and
Experiential contexts towards the left on the x axis. The lowest part of the cluster (-0.4 > yis> -0.7)
almost entirely contexts that are both core Perfect and either core or (mostly) peripheral Perfective.

The Perfect is well known as a difficult category to analyze semantically. The Pierfect
generally analyzed as discrete from the Perfective (D8856:138-39). The MDS analysis bears

out this view on the whole: Perfective and Perfect are mapped into separatelanear, they are

29



not separated as are some of the other functions. Dahl notes the restrictionusgagnspecific

time adverbialsvith the Perfect in many but not all languages, (e.g., Englisha¥e met your
brother yesterdgy Thecontexts intended to test this hypothesis (1411-1441) occur in the middle
part of the cluster, closer to Perfective contexts.

Future and Predictive also cluster, again not surprisingly. Dahl had passiell Predictive
prototype. The spatial arrangement of Future and Predictive suggesBrdatative is a fairly
central subtype of Future. In Dahl's analysis the core Predictive contexts are alsie aluture
contexts. The Futurguster is also separated into two parts, which correspond remarkably well to
the core and peripheral Future contexts as defined abovecoféad-utures are mostly predictive
and intentional, or the consequent clauseifgf ‘when’ and ‘whenever’ clauses, while the
peripheral Futures are generally the antecedantse of ‘if’, ‘when’ and ‘whenever’ clauses. The
three asterisk entries in the peripheral Future region all have future time reference.

Another difference between the clusters inNHeS analysis and those posited by Dahl has to
do with the status of the Present and Imperfective. Dahl treated the Present and Impedeative
default categorywithout a prototype. As a result, a number of contexts that would be analyzed as
Present (or at leaBtonpast) and/or Imperfective were left unanalyzed; we labeled these *. In fact,
most of the * category clustevith Progressive (and also Habitual and Habitual-Generic; see
below). All but two ofthe asterisked contexts in this cluster have present time reference and
imperfective or stative aspect; tremaining two are habitual. In other words, there appears to be a
clusterfor Present Imperfective functions, contrasting with both Past Imperfective and (general)
Perfective (which is instead associated with Perfect functions).

Habitual contexts are split according to tense: the Habitual Past contexts clustérewirast
Imperfect contexts, and the Habitual andiabitual-Generic cluster with the Progressive and

Present-Imperfective functions. In otheords, the Habitual Past is closer to the Past Imperfect

3The contexts labeled O (Progressive), H (Habitual) ai@@tative) in the Past Imperfective cluster are also core
members of the Past Imperfect cluster; they were labeled O/H/Q becausa¢herare Past Imperfect contexts than

Progressive, Habitual or Quotative ones (see condition (ii) of the algorithm for assigning codes).
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than to the general Habitual, and Habitual is closer to the Progressive than to the HabitlihidPast.
result differs from Dahl'sanalysis, in that Dahl posited a series of small Habitual prototype
categories (Habitual, Habitual-Generic, Habitual Past) alongside the broader ProgredsRast
Imperfect categorieDahl also notes that language-specific Progressive and Habitual categories
rarely overlap (Dahl 1985:93), although the Imperfective category sftiesumes both Progressive
and Habitual contexts. Since habitual meamsnglso Imperfective, the clustering of Habitual with

the respective Past and Nonpast/Present functions reinforces the major divisionrapd?iesitive

and Present Imperfective.

The two dimensions of the MDS space are gcligar. One dimension, at about a 30° angle
rightwards fromthe y axis, is tense, ranging from Past (including Past Habitual) and Perfective at
the upperight to the Future at the lower left. The Habitual, Habitual-Generic and Progressive are
found in the middle of this scale; they are differentiated for tense unlike the contexts at the two
ends of the dimension. The Perfect, Experiential and Pluperfect afewatsbin the middle of this
scale. The Perfect, including the Experiential, geaerally (though not always) analyzed as past
events that are relevent tbe current state. That is, the Perfect and Experiential are asserting
something about the currestite as well as the past event, and for this reason, they are associated
with the present (or neutral) tense in the middle of this dimension. The Pluperfext@ls® in the
middle of the scale, but closkr the past end of the dimension than the Perfect/Experiential. Most
of the Pluperfect contexts are the consequent clauses of ‘bafmréivhen’ complex sentences
with pasttime reference. These report events which are mostly relatively recent with respect to the
past referenceéme provided by the ‘before’ or ‘when’ clause. The remaining Pluperfect contexts
appear to describe current relevance of a past event which had been revgrsgtil, EnglisiHad
you opened the window [and closedgfain]2when a room is cold). It is possible that the current
relevance and relative recency of the event with redpetiie reference time positions Pluperfect
closer to the middle of the tense dimension than most (bualhoPerfective uses. The other

dimension, perpendicular to the first, is aspect, ranging from an general Imper{eutiueing

31



Habitual) at theupper left to Perfective/Perfect on the lower right. Our proposed semantic
formulation of the latter dimension is given in 88.

The spatial model supports Dahl’s analysis of the relatiortsbipreen “Present”, “Aorist”
and “Imperfect”in the traditional terminology (Dahl 1985:81-84). Dahl notes that Comrie’s
discussion of these categories (Comrie 1976:71) suggests a pdistangtion of tense between
Present (which is Imperfective by definition) and Past, and a secoduinction in the Past
between Aorist (perfective) and Imperfect (imperfective). Dahl argues that itheaeprimary
distinction of aspect between Perfective and Imperfectindy a secondary distinction between
Present antinperfect. He supports his view with the observation that sometimes Perfective is not
specifically Past (as implied by the analyaigibuted to Comrie) and patterns of morphological
similarity in tense-aspect paradigms of specific languages.

In the spatial modeRast Imperfect is clearly separated from the Present Imperfective contexts
clustered at the upper lefthe two clusters are found in discrete positions on the tense dimension
but a common position ithe aspect dimension. In contrast, Perfective is separate from the two
clusters in the aspect dimension, but spread out in the tense dimension (though torertsithe
past). This distribution implies that Perfective is a discrete category not necessarily restizist
tense, while the Past Imperfect is clearly separated from the Present/Imperfect contexts.

Our last observation is that Futurgedatively neutral with respect to the aspect dimension. As
many have noted;uture is not simply time reference but also necessarily involves an assertion
about a non-real ‘possible worlgf ‘mental space’. ‘when we talk about the future, we are either
talking about someone’s plansitentions or obligations, or we are making a prediction or
extrapolation from the present state of the world’” (Dahl 1985:10&)s is it not accurate to
analyze the Future as either a complete or incomplete bgeatise the future state of affairs holds
only in a non-real world or mental space.

One final conclusion thatan be drawn from the MDS analysis of Dahl's tense-aspect data is
that thetraditional semantic and grammatical division between tense (deictic time reference) and

aspecfsome semantic interpretation of the Imperfective/Perfective distinction) is empirically valid,
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despite the fact that some languages combine tense and aspextaatics in a single grammatical
marker or construction. This division emerges despite the fact thangbe data to the MDS

analysis preserved those tense-aspect combinations.

8. An analysis of lexical and grammatical aspect
8.1. Grammatical and lexical aspect

In 87, anMDS analysis of Dahl's crosslinguistic questionnaire data on tense and aspect
systems revealeal major aspect dimension which we characterized as Perfective and Imperfective.
In this section, we use a phasal representation of lexical aspect and an MDS analysis o&kghglish
Japanese lexical aspect to propose a general semantic analysis of lexical and grammatical aspect.

The category of aspect is a notoriously vexing one (for a general survey up to 18angse
1991; fora survey of more recent literature, see Sasse 2002). First, aspect as a grammatical
category, that is, thperfective-imperfective opposition that emerges from Dahl’'s data, is very
difficult to define. The perfective in Slavianguages, for example, has been described as ‘totality’,
‘boundedness’, ‘definiteness’, ‘exterior’, ‘figure’ [vs. groufdgnda in press). Monosemous
general definitions such as these tend to be vague, or when they are made precisspdoradhe
variation across languages in the occurrence of perfectivengretfective constructions. Dahl,
wishing to accommodate cross-linguistic variation, proposes a protosfo@tion, describing
several features that not all instances of perfective aspect need possess:

A [Perfective] verb will typically denote a single event, sasran unanalyzed whole,
with awell-defined result or end-state, located in the past. More often than not, the
event will be punctual, or at least, it will Been as a single transition from one state
to its opposite, the duration of which can be disregarded. (Dahl 1985:78)

The grammatical definition of aspect is further complicatethbyfact that aspect is manifested
lexically as well as grammatically. Lexicabpect is usually taken to be the inherent temporal
structure of a situation: some situati@gh as being an American are ‘naturally’ enduring states,
while others such as a windolreaking are ‘naturally’ punctual processes, and so on. Most

semantic analyses of lexical aspect take as their starting point a classifittiiiated ultimately to

Aristotle but usually given ithe form presented by Vendler (1967). Vendler distinguishes four
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types of lexical aspect, based on three semantic featwstdive/dynamic (process),
durative/punctual, and bounded/unboun@adtelic/atelic; aspect terminology is also notoriously
ambiguous and overlapping):
(22) States: stative, unbounded and duratiee American, be polite, love)
Activities: dynamic, unbounded and durativea(k, dance)
Achievements: dynamic, bounded and punctsiahfter, reach [the summit]
Accomplishments: dynamic, bounded and durativess [the street], read [the bogk]
In fact, the relationship between verbs and lexical aspect is not one of sissgying verbs
into lexical aspect classes. Dahl puts it succinctly in his discussion of the relationship between
grammatical aspect and lexical aspect:
...in addition to the fact that some aspectual notions are expresseat|byological
means in some languagessitlso true for all languages that verbal lexemes differ
in their ‘aspectual potential’...As often happens, the theoretically nice distinction
[between ‘grammatical’ and ‘lexical’ aspect] turns out todbieer difficult to apply
in practice. To start with, we encounter the problem of separating out the ‘inherent
aspectual meaning’ from contextual influences—atfter all, every occuroérzceerb
is in adefinite context, and there is no obvious way of determining what a ‘neutral
aspectual context’ would biéke. Also it turns out that there is an astonishing
flexibility in how individual verbs may be used. (Dahl 1985:26-27)
In addition to the flexibility of verbs that Dahl observes, it is clear that Vendler’s classification of
aspectualtypes is incomplete. We briefly summarize the major problems with the Vendler
classification here.
Stative predicates such &sow, se®r remembelVendler 1967:113-19) are construed as
(transitory) states when they occur in the simple present:
(23) I know how to do this.
(24) | see Mount Tamalpais.
(25) I remember her.
But they can also be construed as achievements in the past tense:
(26) | suddenly knew the answer.
(27) I reached the crest of the hill and saw Mount Tamalpais.
(28) I instantly remembered her.
Vendler describeseeandknowas having two senses (Vendlg&967:113). However, the two
‘senses’ depend on the grammatmaitext (tense-aspect constructions such as present or past,
supported bydverbials such asuddenlyor instantly). Instead, it is more accurate to say thed

andknow and in fact English perception and cognition predicates in general, have an aspectual
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potential tobe construed as either a state or an achievement in the appropriate semantic and
grammatical context. Thus, state, achievement etc. are not aspectual types of pladicspsctual
types or construals which different predicates have the potential to possess.

Smith (1991:55-58) argues that a fifth aspectual type or construal should be@dtadller's
original four types, which she calls ‘semelfactive’, that describes the temporal stoictdeenples
such as:

(29) Harriet coughed (once).

Example 29 denotes a punctual event that does not leadlifeei@nt resulting state (after
emitting the coughHarriet ‘reverts’ to her normal uncoughing state). Smith also notes that the
same predicateoughcanbe used to describe an activity, when combined with a durative temporal
adverbial or a progressive (ibid., 55):

(30) Harriet coughed for five minutes.
(31) Harriet was coughing.

In other wordsgoughhas an aspectual potential to be construed as either a semelfactiemor as
activity. Which construak found depends on the tense-aspect constructiaghoccurs in (past
tense, durative adverbial, progressive).

Another example of alternative construals revealingeaw aspectual type involves certain
predicates normally construed achievements, such dig, fall asleepor reach the summiwith
many such predicates, the Progressive is unacceptable bdwmlsegressive applies to a durative
situation:

(32) ?*The window is shattering.
However, it is perfectly acceptable, under the rightumstances, to use the progressive with
certain similar predicates (Dowty 1979:137):
(33) She’s dying!
(34) He’s falling asleep.
(35) They are reaching the summit.
In these cases, the progressive folescribes a ‘runup’ process before the achievement of the

change of state (and ilact, that change of state may not be achieved). Again, there are two

alternative construals of the aspectual typthefsituation, depending on the grammatical aspectual
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context. Again, however, a new aspectype must be recognized. Althougte’s falling asleeps
durative andoounded, it is not an accomplishment. Accomplishments consist of an incremental,
measurable change over time that lemdshe resulting state (Dowty 1991; Hay et al. 1999), as
indicated by the acceptability of a measure phrase:

(36) I have read a quarter of the way through the newspaper.

But the process leading up to falling asleep or dying is not an incremental, measurable process:
(37) *She has died/fallen asleep a quarter of the way.

Croft (to appear, in preprames this aspectual construal a ‘runup achievement’: a nonincremental
process leading up to a momentaneous change to a resulting state.

Further lexical aspectual distinctions have been proposed imaghect literature. Carlson
introduces a distinction he describes as ‘object-level’ vs. ‘stage-level’ (Ca836r66-57); this
distinction corresponds to what othéesse described as transitory vs. permanent or inherent. One
effect of introducing this distinction i® divide states into transitory states, suchbasll or be
angry, andinherent states such && AmericanMittwoch identifies a third type of state, point
states, illustrated blpe 50’clock or be at the zeniti{Mittwoch 1988:234). Dowty (1979:88-90)
discuss a category which he calls ‘degree achievements’asaobl, sink, ageHay, Kennedy &

Levin (1999:132) argue that these predicates are construed aspectuahy wasounded but
directed change on a scale, i.e. a distasgtectual type from (undirected) activities. In other words,
Hay, Kennedy and Leviargue for a distinct aspectual construal of an unbounded but incremental
or measurablactivity, so that activities are divided into directed or undirected bounded processes.
Finally, Talmy (1985:77) distinguishes reversible (his ‘resettable’) achievements, spobnas

close which can be reversed and therefore repeated, from irreversible (‘non-resettable’)
achievementsuch as most predicates of destruction or disintegration sustatter smash, die

or kill, which cannot be reversed or repeated.

In sum, the following aspectual types/construals have been proposed:

(38) a. Three types of states: inherent, transitory and point states, the last being a subtype of
transitory states;

b. Two types of activities: directed activities and undirected activities;
c. Two types of achievements: reversible achievements and irreversible achievements;
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d. Accomplishments;
e. Semelfactives;
f. Runup achievements (not really achievements in Vendler’'s sense, but bounded, durative
processes that do not involve incremental change)
8.2. A phasal analysis of aspectual types/construals

We use the phasal model of aspect developed by Croft (to appear, in prep.) to Hrealyze
aspectual types in 38 (for argumeimtgavor of a phasal model, see Binnick 1991:194-207; Sasse
1991; Bickel 1997, inter alia). In this modelents are represented in two dimensions, time (t) and
qualitative states (gPunctual event phases are points on t, and durative phases are extended on t.
Stative phases are points on g (oomg qualitative state holds over the relevant time period), while
dynamic phases are extended gr{representing change from one qualitative state to another,
possibly through intermediate states).

A verb in a particular grammatical and semantic context denotsamILES (Langacker 1987)
one (or possiblynore) phases of theSPECTUAL CONTOUROf an event. Figure 14 compares the
achievemenand state aspectual construalsseéfrom examples 24 and 27 (the profiled phase is
indicated with a solid line):

FIGURE 14: State and achievement construals afee

The t/q phase representations allows one to incorporate the aspectual coastrubdsinctions
identified in the aspectual literature since Vendler's paper. These asfgptmican be grouped
according to Vendler’s original four-way classification.

Three kinds of states are illustrated in Figure 15:

FIGURE 15: Three kinds of states
The first two types represent the distinction betwiansitory (stage-level) and inherent (object
level) states. Inherent states hold for the lifetime ofethiity, which is represented by the arrow
implying extension to the end of the t scale (t is relatvihe lifetime of the entity). The third type
represents point states.

To these three kinds of states, there correspond three kinds of achievements:

FIGURE 16: Three kinds of achievements
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Reversible and irreversible achievements {almy 1985:77) denote the punctual transition to
transitory and inherent states respectively. Cyclic achievements are Ssaithédfactives: for
example, the sound emission vexughdenotes a punctual transition to a puncgaind which
then ceases.

Following Hay et al., two types of activities are distinguished:

FIGURE 17: Two kinds of activities
A directed activity is straightforwardly represented by a tempoealignded incremental change on
the g dimension. An undirected activity is represebtea cyclic change on the g dimension. This
representation is not an arbitrary choicethat undirected activities can be construed as iterated
cyclical events: dancing is repeated steps, talismgpeated sound emissions and so on. Likewise,
coughing (in the activity construal) constitutes repeated individual coughing events.

Finally, thereare two kinds of performances (bounded processes) corresponding to the two
kinds of activities:

FIGURE 18: Two kinds of performances
An accomplishment is a directed activity that is temporally bounded mcéption and completion
phases (hence, three phases are here profiled). A achigvement is an undirected activity that is
also temporally bounded, since the process is not a measurable gradual change to the resulting state.

The t/q phasal representation providesaanework for systematically capturing the range of
aspectual types thaave been documented in the aspectual literature (see Croft to appear, in prep.
for a more detailed discussion). The t/q phasal representation will also playraredéing lexical
aspect and grammatical aspect via an MDS analysis of lexical aspect in English and Japanese.
8.3. An MDS analysis of aspectual potential (Ilexical aspect)

We performed an MDS analysi$ English lexical aspect data provided by first author and
parallel Japanese dataTaoka (2000). The aspectual potential of 44 English verbs in the English
Simple Present, Present Progressing Simple Past constructions was analyzed by introspection.
Each verb was coded for whether it could be interpreted in one orainthre aspectual types listed

above. Two changes were made to the classification of aspectual types iR&&#8sible and
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irreversible achievements were reduced to a sitygle, directed achievements. In addition, the
habitual interpretation was treated as a distinct construal from the inherent state; compare 39 to 40:

(39) I drink milk (I am not allergic to it).
(40) I drink milk (every morning).

Sentence 39 describes an inherent state of the speaker, presumably a physmogerdy.
Sentence 40 can be thought of as an inherent state as well, in the sathatwakin is politas
construed as anherent state. However, it is a distinct interpretatiordiafk, and so has been
coded separately from the interpretation in 39.

The goal of the analysis was to capture as much as possible of the gramamatisainantic
variability of the verbal predicates in aspectual constructions. For this reasorg@wstraints were
imposed on sentence types, while latitude was allowed on other gramnatitatemantic
properties. Only usesf the Simple Present and Present Progressive with realis present time
reference were considered; likewise, only usethefSimple Past with realis past time reference
were used. Arguments were restricted to single, specific referents. Hoaxgament structure was
allowed to vary: forexample, This bed sleeps twwas allowed as an inherent state construal of
sleep Also, referent type was allowed to vary, so thgtwas coded as a transitory statedjothes)
or an inherent state (af desert). There were a total of 15 different aspectual construals across the
three English constructions. The 44 verbs that were analyzed fell into 27 distinct distritasgses
in terms of their aspectual potential across the three English constructions.

A parallelanalysis of Japanese predicates is found in Taoka (2000). Taoka analyzes aspectual
construals of 48 predicates in three constructiondtbsent, thée-iru construction, and the Past.
Thete-iru construction includes the perfect among its uses and Taoka coded the perthstiact a
construal. Taoka identified 40 distinct aspectual classes and a tolal different aspectual
constructions across the three Japanese constructions.

We combined the analyses of English daganese lexical aspect, so that for each predicate in
either English or Japanese, its distribution in the English and Japanese constwet@ireated
together. (We also did@lot MDS analysis of the English data alone.) There was a large but not

complete degree averlap in the predicates used in the two studies. The resulting matrix mapped
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44 predicates acros32 constructions in the two languages. The data fit very well in two
dimensions:

(41) Dimensions Classification ~ APRE

1 86.6% .500
2 93.3% .750
3 96.5% .869

Although a case coulde made for a three-dimensional analysis, it is probably premature to judge
without incorporating data from further languages.

The two-dimensional display is presentedrigure 18. The data points are labeled with the
English equivalent of a representative predidateeach distributionally distinct semantic class
across the two languages.

FIGURE 19: Two-dimensional model of lexical aspect

The English-Japanese lexical aspect data are someuikgf that is, there are several semantic
anomaliesThis is due in part to the small dataset, restricted to a total of only 32 constructions in
two languages (see 89 for further discussion). Nevertheless, theatlatze interpreted as set of
clusters arranged in a circle, not unlike the color circle founthénpsychology of perception
(Ekman 1954). The clusters correspond to semantic classes of predicates tbahivaspectual
potential. The circular arrangement of the clusters captaresnon alternative aspectual construals
found with those semantic classes of predicates (named here fortrdditional ‘default’

construal). The circle is summarized in 42, beginning at around 9 o’clock in Figure 18:

(42)

9:00 12:00 2:00 4:00 6:00 7:00 9:00 ...
transitory — directed —directed —undirected —cyclic —inactive - transitory ...
states achievements activities activities  achievements actions states

be ill, split, cover, dance, flash, touch be ill,

be president die shrink eat wave sit be president

We describe the construals below, following the order given above.

As we noted in 88.2, cognition apérception predicates allow both a transitory state construal
and an achievement (inceptive) construal. (Howesegandunderstandyroup with the cluster at 7
o’clock; see below.) This is also true of physical states and roles:

(43) In an instant, my clothes were thoroughly wet.
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(44) Inthree years, she was president of the company.

Thesequence of phases for both the transitory state and directed achievement construals is the
same: original state - transition - resulting state.The only diffelesiveeen these two construals is
whether the inception of the state is denoted or the resulting state is denoted.

The clusterat 12 o’clock contains semantic classes normally construed as directed
achievements. (The presence of inherent state predicatewilidne discussed below.) The next
cluster, at2 o’clock, consists of semantic classes normally construed as directed activities or
accomplishments (depending whether the relevant argument is bounded or not). Many directed
change (change-of-statefjedicates allow for either a punctual directed achievement construal or a
more gradual directed activity or accomplishment construal. For examplenat isnnatural in
English to sayrhe iceberg gradually broke in hatonverselyFrankentered the room at 2:18
construed agunctual. The only difference between these two construals is whether the change of
state is construed as punctual or extended in time. (We have no explasatiowhykill, discover
and win, seemingly typical direct achievemengse in a separate cluster inside the circle at 7
o’clock. In the English pilot analysis, they clustered with the other typical directed achievements.)

The next cluster, at 4’clock, contains semantic classes normally construed as undirected
activities. In many languages, including English, mangcesses that are usually construed as
undirected activities can also be construed as directed activities. This phenomenon is daescribed
‘satellite-framing’ by Talmy(1991): a manner of motion predicate, normally construed as an
undirected process, also can occur in a directed motion construction:

(45) Terry danced for two hours. [undirected manner of motion]
(46) Terry danced across the room. [directed motion]

In fact, in the English-only pilot analysis, directed and undirected actiateeslustered together;

with the addition of Japanese, which does not atleevdirect construal of manner of motion as
directed motion, théwo types of activities are clearly separated. The difference in the aspectual
construal ismore significant here, but these and other examples indicate that processes that are
undirected activities when occurring by themselves are associated in lanvgtiagbe directed

activities which they frequently accompany in experience.
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The cluster at 6 o’clock consists of semantic clasgegh commonly possess a cyclic
achievement (semelfactivepnstrual. As we noted above, these semantic classes—sound and light
emission, contact and bodily motion—commonly allow for kttyclic achievement construal and
an undirected activity construal. Conversely, undirected activities are iteratioydiofachievement
processes. The only difference in the aspectual construal is the iteration of the cyclic event.

The large cluster at 7 o’clock contains semantic classes Vdllcimto an aspectual category
called stative progressives by Dowty (1979:173) and inactive actions by Croft (1991c@nkitits
of semantic classes suab body posture verbs and some contact verbs (47-49), as well as certain
mental and physiological process verbs (50-52):

(47) Jimis standing at the top of the stairs.
(48) The box is lying on the bed.

(49) Johnny touched/is touching my nose.
(50) I'm thinking.

(51) She’s sleeping.

(52) The flowers are blooming.

All of these situatiortypes display an outward appearance of a transitory state, but seem to
involve an internal or ‘invisible’ process. Examples 47 and 49 involve the maintenant®dy a
posture, which requires some interpedcess (compare the neutdan is at the top of the sta)rs
in 48, this is reduced to the foroé gravity and the support of the underlying object (the bed).
Example 50presumably reflects some internal mental activity, while 51-52 reflect some internal
physiologicalprocess. The grammatical manifestation of this aspectual ambivalence in English is
the use of the Progressive, otherwise used exclusively for processesote what appears to be a
transitory state. This, combined with the aspectual behavior of 8iesdion types in other
constructions, places them between cyclic achievements and undirected activitiesome hand,
and transitory states on the other.

The one cluster of semantic classes that does not fitmthllthis semantic interpretation of the

spatial model is that of inherent predicates suclhesilver, be a lizard, resembénd differ.

4In the combined English-Japanese analygsisandunderstandalso cluster wittthink; in the English-only pilot

analysis, they cluster with typical transitory states.
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Interestingly, this group of predicates is tiree that shifted position dramatically comparing the
English-only pilot analysis tthe English-Japanese analysis (in the former, it clusters loosely with
activities; in the latter, it clusters with directed achievements).dtso probably significant that two

of the three construals that produced the most classifioatiors in the English-Japanese analysis
were the inherent construals of the Pregeiiinglish and Japanese. Finally, it is worth noting that
the choice to allow differing argument structures in cogiogsible aspectual construals in English
affected only the inherent state construal. Incorporating the intsteg@taspectual construal to our
analysis of the lexical aspect circle will require further empirical studies.

In sum, theras evidence from the English-Japanese MDS analysis that semantic classes of
predicates form a circular pattern of clusters that represent common paissts®ated aspectual
construals which are themselves related, either aspectually andigrernence. The dataset is quite
limited, however, consisting of only two languages. For this reason,isharsubstantial amount of
noise, and a number of anomalous clusters or positioninglssters in the data. Nevertheless, the
overall configuration remained the same in moving from English-only pilot analysis to the
English-Japanese analysis. Further analysis with a larger set of languages is reqomédhiche
configuration. Even sdhe spatial model of English-Japanese lexical aspect suggests a solution to
the problem of the semantic interpretation of grammatical aspect.

8.4. Relating lexical and grammatical aspect

Our proposal is that the perfective/imperfective distinction in grammaisgect corresponds to
an opposition of aspectual construals characteristic of the 10-12 o’clock anttléck regions
on the lexical aspect circle, which are approximately oppositeatheh on the circle. The evidence
supporting this proposal is drawn from Bybee et al.’s (1994) typological sfudypse, aspect and
mood in a sample of 90 languages.

Bybee et al. identify two families of grammatical tense-aspect categories, loased
grammaticalization processes that link together grammatitagories. The first family includes of
anterior (perfect) and perfective senses (Bybee et al. 1994, chapter 3). This corresporidw/¢o the

right part of the tense-aspect space derived from Dahl’s datasetd&sathibed the perfective as
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denoting a bounded event, ideally punctual (88.1). However, the perfective and anteridiaate in
closely associated with stative predicatesw&snoted in 87, the anterior is analyzed as denoting a
past eventvith current relevance. That is, in some sense both the past completed event and the
current state are denoted by Hreerior. The anterior is closely related to resultatives (Bybee et al.
1994:63-68), whichare stative. Resultatives often originate in stative expressions (ibid., 67) and
grammaticalize into anteriors (ibid., 68-69). Dynamic verb souf@esnteriors include typical
directed achievements such as ‘finish’ or ‘arrive’ (ibid., 70-71). WAméeriors and completives

are extended to typically stative predicates, they tend to express copgdséssion of the state, or

a change of state; in the latter case, they may come to mean the resulting state again (ibid., 74-77).

In other words,n the process of grammaticalization, grammatical forms in this family of
meanings move baand forth between an achievement construal and a (resulting) state construal.
This close relationship between achievement and staguzgling from the perspective of
perfectivity as completion or boundedness: states are unbounded. Bathiegement-state
ambivalence is exactly what we observed for semantic classies 40-12 o’clock region of the
lexical aspect circlelt represents profiling of different phases in the aspectual contour given in
Figure 20, which we call the transition aspectual contour:

FIGURE 20: The transition aspectual contour.

The second family of grammatictdnse-aspect categories include imperfective, progressive,
presentind habituals (Bybee et al. 1994, chapter 5). This family corresponds to the cluster in the
upper left of the tense-aspect space derived Daim’s dataset. Dahl did not describe a prototype
definition for these categories, apadm habitual; but we observed in 88 that the habitual clusters
closely with the progressivand imperfective. Progressives grammaticalize into presents and
imperfectives (ibid., 140-49). Progressives frequently originate in posture verbs (‘sit’, ‘Staihd’,
‘stay’, ‘live’), which fall into the category of inactive actions (stative progressives) described in
88.2. Bybee et alfurther identify another source for progressive meanings in reduplicative
constructions (ibid., 166-74). Verb reduplication begins withtarative function. Bybee et al.

suggest that if an iterative evolves into a continuous function (‘keep on Verb-ing’), tban it
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grammaticalize into a progressive and thenan imperfective. If an iterative evolves into a
frequentative function, then it can grammaticalize into a habitual and then to an imperfective.

This family of constructions itherefore associated with iteration of actions and also to typical
inactive actions. But these aspectual construals are associated with the semantic dlassés at
o’clock regionof the lexical aspect circle, almost exactly opposite the perfective side of the circle.
They represent aspectual construals of situations that can be captureddspdbeial contour
given in Figure 21, which we call the cyclic aspectual contour:

FIGURE 21: The cyclic aspectual contour.

In our analysis, the perfective/imperfective grammatical opposition repredestdy related
aspectual construals that are characteristic of opposite sidé® déxical aspect circle. The
opposing construals are based on opposing aspectual contours, the directed transitiofiocontour
perfective and the cyclic contour for imperfective. This analysis accourttefenembership of the
two families of related grammatical tense-aspect categories. The ar@fiexplains why no
single simple semantmpposition captures the perfective-imperfective distinction: the semantics of
the opposition is based on a contrast betweercommplex multi-phase aspectual contours. Finally,
the analysis links grammatical and lexical aspect through a sihgke-based representation of the
unfolding of events through time.

9. Conclusion: language universals, variation and acquisition

Multidimensional scaling, in particular thanfolding model we have applied here, provides a
mathematically well-foundednd powerful tool for deriving language universals from grammatical
variation. MDS offers a number of significant advantages over semantic maps, battiaalars
(suchas the ability to interpret distance and dimensionality in the Euclidean spatial model) and in
the general mathematical and computational tools that have been developed over many decades.

From a linguistic theoretical point of viewIDS fits very well into typological theory. In
typological theoryJanguage universals are based in the conceptual organization of the mind, as
represented by the spatial model resulting fldiDS analysis. Yet the great range of language

specific grammatical diversity that has been observed in empirical resssaads languages is
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allowed, as part dhe ‘semantic maps’ or cutting lines which represent grammatical distributional
patterns mappednto the conceptual space. The success of MDS in inferring grammatical
universalsas illustrated in this paper suggests that further applications of MDS to the analysis of
crosslinguistic variation will lead to the discovery of further language universals, as wh# as
confirmation or revision of previously established universals.

In fact, the results of the MDS analyses performethim paper suggest that in grammatical
behavior, greater regularity emerges from greater diversity. We notedthtnalinguistically
strongest results, iterms of the clear semantic clustering of functions and interpretability of
dimensions, were foundavith the most diverse datasets, containing the largest number of
constructions and/or languages investigated. The smaller datasets of Bndli§apanese lexical
aspect, while containing significant patterns, also contain more noise.

This observation is confirmed by another MDS analysis we performetheotausative
inchoative-stative verb patterns founddroft (1990). Croft (1990), following previous work (e.g.,
Dowty 1979), assumes that events can be defingnms of three sets of causal-aspectual phases:
causative (cause-become-stat@ghoative (become-state) or stative (state). However, different
predicates differ aso which of these three types is zero-coded (unmarked). For example, in
English,eatis zero-coded in the causative but overtly coded in the inchoative and stative/resultative:
(53) The boysatethe chocolate cake.

(54) The chocolate cakgot eatenby 7pm.

(55) The chocolate cake is ahten

In contrast, Englisihard(en)is zero coded as a state (apart from the copula \mrbyvertly coded
in the inchoative and causative:

(56) The clay ishard.

(57) The clayhardened

(58) The surhardenedthe clay.

Some verbs are zero coded in more than one construction:

(59) The clothes ardry.

(60) The clothegried.
(61) I dried the clothes.
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Croft examined whether or not the causative, inchoative or stative/resultative veris fpero
coded for 159 verbs in English, French, JapaneseKorean. We performed an MDS analysis of
the data in Croft (1990). The data scaled weeyl in two dimensions (98.9% correct classification,
APRE of 0.965), but the results were not well structured:

FIGURE 22: Two-dimensional model of causative-inchoative-stative verbs

Most of the data points are densely clustered in the center of the model. The rets®mpémr
structure of the data can be inferred from the figure. There are only twelve cutting lineso(ia
of causative, inchoative and/or stative for each of the four languages). Moreover, the cuttiiog lines
each verb type are very similar across the languages. In other words, there is little divéngity in
data, and as a result, there is little structure that can be inferred as language universals.

This observation about grammatical behavior argues against both an extigarsalist and an
extreme relativist theory of grammadn. an extreme universalist theory, the basic structures of a
language are fundamentatlye same, and in fact can be inferred from data from a relatively small
number of languages, or even just one language. This theory predicts that regulac&fing
would emerge in examining only a few, or even just ¢temeguage. Adding languages would not
change this picture; if anything it would create more noise in the data. But in fact regularityptioes
emerge in small datasets from a small number of languages; it only envenges more
constructions from more languages are added.

In an extreme relativist theory, thasic structures of a language are fundamentally different
from language to language. The examination of a smatiber of languages would give a false
sense of regularity that would break dowith the examination of more languages. This theory
predicts that regularity might emerge in small datasets, but would disappear in large dat@aséts. In
the opposite occurs.

The way that regularities—language universals—appeaVid® analyses of grammatical
variation within andacross languages demonstrates that language universals exist, but they are not
directly manifested as a set of universal linguistic structures. Instead, language universals are

indirect. Language universals are constraomtgrammatical variation, and grammatical variation is

47



as necessary a part of language as the universals are. For example, the clustaedpositen and
tense-aspect analyses in Figures 1348 18 areNOT universal grammatical categories. Rather,
they are universaCONCEPTUAL categories that constrain trstructure of language-specific
grammatical categories (compare Croft's analysis of parts of spe€ubft 2001, chapter 2). The
language-specific grammatical categories are represented by the cuttingHmesitting lines may

in fact cut through the clusters of functions in the space. This fact incideseatignstrates that the
internal Euclidean structuraf the cluster also has grammatical and conceptual significance, and
identifying the clusters and dimensionglod space only scratch the surface of the generalizations
captured by the spatial model.

The relative position andlistance of points in the spatial model represent a conceptual
organization, presumably the product of human cognitiorirdadaction with the environment, that
constrain the structure of grammar. Thus, a completierstanding of the nature of grammar
involves not only the conceptual structures in the spaibalel (important as they are), but also the
detailof grammatical variation outlined for example in Dahl’'s and Bybee’s monographs on tense
and aspect. In fact, our MDS analyses show thatigo®very of language universals is essentially
dependent on extensivdetailed studies of crosslinguistic and within-language grammatical
variation.

All of the linguistic datasets that we have analyzed (includmme to be described in future
publications)are low-dimensional, in the same way that MDS analyses of psychological and
political behavior are low-dimensional. We believe that this captarésndamental truth about
human behavior. Human beings are ableethuce the immense complexity of the world, including
their languages, into a small, manageable number of conceptual dimensiocsnéigdrations.

This is the insight behinthe two-space model (83.2). Of course, the dimensions found in a good
low-dimensional scaling of the data typically do actount for all of the variance. There are other
factors involved,including random and sporadic phenomena. The dimensions in a goed low
dimensional scaling of the data are, however, the most significant dimers¢iaoturing the

similarity relations among the entities represented by the points in the space.
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Finally, the structure of the data we have analyzed suggestde of how a child may learn a
language. A child develops a low-dimensional model of (dis)similartiesveen situations,
presumably through combination of innate abilities and interaction with her environment. As the
child comprehenddinguistic expressions used to describe these situations, she begins to
approximate the cutting lines for the words and constructions of her languagee Akild is
exposed to more and more linguistic expressions and the situations they dédseriogting line is
more precisely placed in the conceptual space. Moedker,structure of the space and the
positioning of the cutting line allows the child to use the word or construittionew situations
that are similar in the right ways to the known points on the right side wfdite or construction’s
cuttingline. In this respect, a language is a set of hyperplanes representing the cutting lines of its

words and constructions through conceptual space.
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